ตัววิ่ง

ยินดีต้อนรับสู่เว็บบล็อก ผลงานนักเรียนของ นายชนะกานต์ นกทอง ได้เลยครับ

..

Read more: http://nanfufu.blogspot.com/2012/05/blog-post_7965.html#ixzz3xlYkYJIl

วันพุธที่ 6 มกราคม พ.ศ. 2559

บทที่4 เรื่องฟังก์ชั่น

ในทางคณิตศาสตร์ "ฟังก์ชัน" บัญญัติขึ้นโดย ไลบ์นิซ ใน พ.ศ. 2237 เพื่ออธิบายปริมาณที่เกี่ยวข้องกับเส้นโค้ง เช่น ความชันของเส้นโค้ง หรือจุดบนเส้นโค้ง ฟังก์ชันที่ไลบ์นิซพิจารณานั้นในปัจจุบันเรียกว่า ฟังก์ชันที่หาอนุพันธ์ได้ และเป็นชนิดของฟังก์ชันที่มักจะแก้ด้วยผู้ที่ไม่ใช่นักคณิตศาสตร์ สำหรับฟังก์ชันชนิดนี้ เราสามารถพูดถึงลิมิตและอนุพันธ์ ซึ่งเป็นการทฤษฎีเซต พวกเขาได้พยายามนิยามวัตถุทางคณิตศาสตร์ทั้งหมดด้วย เซต ดีริคเลท และ โลบาเชฟสกี ได้ให้นิยามสมัยใหม่ของฟังก์ชันออกมาเกือบพร้อมๆกัน
ในคำนิยามนี้ ฟังก์ชันเป็นเพียงกรณีพิเศษของความสัมพันธ์ อย่างไรก็ตาม เป็นกรณีที่มีความน่าสนใจเป็นพิเศษ ความแตกต่างระหว่างคำนิยามสมัยใหม่กับคำนิยามของออยเลอร์นั้นเล็กน้อยมาก
แนวคิดของ ฟังก์ชัน ที่เป็นกฎในการคำนวณ แทนที่เป็นความสัมพันธ์ชนิดพิเศษนั้น อยู่ในคณิตตรรกศาสตร์ และวิทยาการคอมพิวเตอร์เชิงทฤษฎี ด้วยหลายระบบ รวมไปถึง แคลคูลัสแลมบ์ดา ทฤษฎีฟังก์ชันเวียนเกิด และเครื่องจักรทัวริง

นิยามอย่างเป็นรูปนัย

ฟังก์ชัน f จากข้อมูลนำเข้าในเซต X ไปยังผลที่เป็นไปได้ในเซต Y (เขียนเป็น f:X\rightarrow Y) คือความสัมพันธ์ระหว่าง X กับ Y ซึ่ง
  1. สำหรับทุกค่า x ใน X จะมี y ใน Y ซึ่ง xfy ( x มีความสัมพันธ์ f กับ y) นั่นคือ สำหรับค่านำเข้าแต่ละค่า จะมีผลลัพธ์ใน Y อย่างน้อย 1 ผลลัพธ์เสมอ
  1. ถ้า xfy และ xfz แล้ว y=z นั่นคือ ค่านำเข้าหลายค่าสามารถมีผลลัพธ์ได้ค่าเดียว แต่ค่านำเข้าค่าเดียวไม่ส อ่านเพิ่

ไม่มีความคิดเห็น:

แสดงความคิดเห็น